TY - JOUR
T1 - miR-214 as a Key Hub that Controls Cancer
Networks: Small Player, Multiple Functions
AU - PENNA, ELISA
AU - ORSO, Francesca
AU - TAVERNA, Daniela
N1 - Publisher Copyright:
© 2015 The Society for Investigative Dermatology.
PY - 2014
Y1 - 2014
N2 - MicroRNAs are short regulatory RNAs that are able to post-transcriptionally modulate gene expression and that have crucial roles in the control of physiological and pathological processes including cancer onset, growth, and progression. miR-214, located inside the sequence of the long noncoding Dmn3os transcript, contributes to the regulation of normal and cancer cell biology, even if it operates in a context-dependent and sometimes contradictory manner. miR-214 is deregulated in several human tumors including melanoma, breast, ovarian, gastric, and hepatocellular carcinomas. miR-214's pleiotropic and tumor-specific contribution to various cancer formation and progression hallmarks is achieved via its several target genes. In fact, miR-214 behaves as a key hub by coordinating fundamental signaling networks such as PTEN/AKT, β-catenin, and tyrosine kinase receptor pathways. Interestingly, miR-214 also regulates the levels of crucial gene expression modulators: the epigenetic repressor Ezh2, "genome guardian" p53, transcription factors TFAP2, and another microRNA, miR-148b. Thus, miR-214 seems to have essential roles in coordinating tumor proliferation, stemness, angiogenesis, invasiveness, extravasation, metastasis, resistance to chemotherapy, and microenvironment. The sum of current literature reports suggests that miR-214 is a molecular hub involved in the control of cancer networks and, as such, could be a potential diagnostic/prognostic biomarker and target for therapeutic intervention.
AB - MicroRNAs are short regulatory RNAs that are able to post-transcriptionally modulate gene expression and that have crucial roles in the control of physiological and pathological processes including cancer onset, growth, and progression. miR-214, located inside the sequence of the long noncoding Dmn3os transcript, contributes to the regulation of normal and cancer cell biology, even if it operates in a context-dependent and sometimes contradictory manner. miR-214 is deregulated in several human tumors including melanoma, breast, ovarian, gastric, and hepatocellular carcinomas. miR-214's pleiotropic and tumor-specific contribution to various cancer formation and progression hallmarks is achieved via its several target genes. In fact, miR-214 behaves as a key hub by coordinating fundamental signaling networks such as PTEN/AKT, β-catenin, and tyrosine kinase receptor pathways. Interestingly, miR-214 also regulates the levels of crucial gene expression modulators: the epigenetic repressor Ezh2, "genome guardian" p53, transcription factors TFAP2, and another microRNA, miR-148b. Thus, miR-214 seems to have essential roles in coordinating tumor proliferation, stemness, angiogenesis, invasiveness, extravasation, metastasis, resistance to chemotherapy, and microenvironment. The sum of current literature reports suggests that miR-214 is a molecular hub involved in the control of cancer networks and, as such, could be a potential diagnostic/prognostic biomarker and target for therapeutic intervention.
UR - https://iris.uniupo.it/handle/11579/149823
U2 - 10.1038/jid.2014.479
DO - 10.1038/jid.2014.479
M3 - Article
SN - 0022-202X
VL - 135 (4)
SP - 960
EP - 969
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
ER -