TY - JOUR
T1 - Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone
AU - Giavaresi, G
AU - Fini, M
AU - Cigada, A
AU - Chiesa, R
AU - Rondelli, G
AU - RIMONDINI, Lia
AU - Torricelli, P
AU - NN, Aldini
AU - Giardino, R.
PY - 2003
Y1 - 2003
N2 - Improvement of the implant-bone interface is still an open problem and the interest in chemical modification of implant surfaces for cementless fixation has grown steadily over the past decade. Mechanical and histomorphometric investigations were performed at different times on implants inserted into sheep femoral cortical bone to compare the in vivo osseointegration of titanium screws (∅ 3.5×7mm length) with different surface treatments. After 8 weeks of implantation, the push-out force of anodized and hydrothermally treated implants (ANODIC) was significantly higher than that of machined implants (MACH) (36%, p<0.0005), whereas a decrease of 39% was observed for acid-etched implants (HF) when compared to other surface treatments. After 12 weeks of implantation, the push-out force values of HF implants were still significantly lower than those observed for MACH (-19%, p<0.01) and hydroxyapatite vacuum plasma-sprayed implants (HAVPS, -25%, p<0.0005), and the highest push-out force was found in HAVPS (p<0.001) implants. After 8 and 12 weeks of implantation, the AI of HF implants was significantly (p<0.05) lower (∼-25%) than that of MACH, HAVPS and ANODIC implants. In conclusion, results appear to confirm that there are no specific differences between ANODIC and HAVPS implants in terms of behavior. Moreover, although MACH implants show some surface contaminating agents, they appear to ensure good osseointegration within 12 weeks both mechanically and histomorphometrically, as do ANODIC and HAVPS implants. However, further studies are required to investigate bone hardness and mineralization around implants.
AB - Improvement of the implant-bone interface is still an open problem and the interest in chemical modification of implant surfaces for cementless fixation has grown steadily over the past decade. Mechanical and histomorphometric investigations were performed at different times on implants inserted into sheep femoral cortical bone to compare the in vivo osseointegration of titanium screws (∅ 3.5×7mm length) with different surface treatments. After 8 weeks of implantation, the push-out force of anodized and hydrothermally treated implants (ANODIC) was significantly higher than that of machined implants (MACH) (36%, p<0.0005), whereas a decrease of 39% was observed for acid-etched implants (HF) when compared to other surface treatments. After 12 weeks of implantation, the push-out force values of HF implants were still significantly lower than those observed for MACH (-19%, p<0.01) and hydroxyapatite vacuum plasma-sprayed implants (HAVPS, -25%, p<0.0005), and the highest push-out force was found in HAVPS (p<0.001) implants. After 8 and 12 weeks of implantation, the AI of HF implants was significantly (p<0.05) lower (∼-25%) than that of MACH, HAVPS and ANODIC implants. In conclusion, results appear to confirm that there are no specific differences between ANODIC and HAVPS implants in terms of behavior. Moreover, although MACH implants show some surface contaminating agents, they appear to ensure good osseointegration within 12 weeks both mechanically and histomorphometrically, as do ANODIC and HAVPS implants. However, further studies are required to investigate bone hardness and mineralization around implants.
UR - https://iris.uniupo.it/handle/11579/17987
U2 - 10.1016/S0142-9612(02)00548-3
DO - 10.1016/S0142-9612(02)00548-3
M3 - Article
SN - 0142-9612
VL - 24
SP - 1583
EP - 1594
JO - Biomaterials
JF - Biomaterials
IS - 9
ER -