Matrix methods for radial Schrödinger eigenproblems defined on a semi-infinite domain

Lidia Aceto, Cecilia Magherini, Ewa B. Weinmüller

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper, we discuss numerical approximation of the eigenvalues of the one-dimensional radial Schrödinger equation posed on a semi-infinite interval. The original problem is first transformed to one defined on a finite domain by applying suitable change of the independent variable. The eigenvalue problem for the resulting differential operator is then approximated by a generalized algebraic eigenvalue problem arising after discretization of the analytical problem by the matrix method based on high order finite difference schemes. Numerical experiments illustrate the performance of the approach.

Lingua originaleInglese
pagine (da-a)179-188
Numero di pagine10
RivistaApplied Mathematics and Computation
Volume255
DOI
Stato di pubblicazionePubblicato - 15 mar 2015
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Matrix methods for radial Schrödinger eigenproblems defined on a semi-infinite domain'. Insieme formano una fingerprint unica.

Cita questo