TY - JOUR
T1 - Malignant pleural mesothelioma
T2 - Germline variants in DNA repair genes may steer tailored treatment
AU - Sculco, Marika
AU - La Vecchia, Marta
AU - Aspesi, Anna
AU - Pinton, Giulia
AU - Clavenna, Michela G.
AU - Casalone, Elisabetta
AU - Allione, Alessandra
AU - Grosso, Federica
AU - Libener, Roberta
AU - Muzio, Alberto
AU - Rena, Ottavio
AU - Baietto, Guido
AU - Parini, Sara
AU - Boldorini, Renzo
AU - Giachino, Daniela
AU - Papotti, Mauro
AU - Scagliotti, Giorgio V.
AU - Migliore, Enrica
AU - Mirabelli, Dario
AU - Moro, Laura
AU - Magnani, Corrado
AU - Ferrante, Daniela
AU - Matullo, Giuseppe
AU - Dianzani, Irma
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/3
Y1 - 2022/3
N2 - Introduction: Malignant pleural mesothelioma (MPM) is a tumour associated with asbestos exposure. Approximately, 10% of patients with MPM carry a germline pathogenic variant (PV), mostly in DNA repair genes, suggesting the occurrence of inherited predispositions. Aim: This article aimed to 1) search for new predisposing genes and assess the prevalence of PVs in DNA repair genes, by next-generation sequencing (NGS) analysis of germline DNA from 113 unselected patients with MPM and 2) evaluate whether these patients could be sensitive to tailored treatments. Methods: NGS was performed using a custom panel of 107 cancer-predisposing genes. To investigate the response to selected drugs in conditions of DNA repair insufficiency, we created a three-dimensional-MPM cell model that had a defect in ataxia telangiectasia mutated (ATM), the master regulator of DNA repair. Results: We identified PVs in approximately 7% of patients with MPM (8/113) and a new PV in BAP1 in a further patient with familial MPM. Most of these PVs were in genes involved or supposedly involved in DNA repair (BRCA1, BRIP1, CHEK2, SLX4, FLCN and BAP1). In vitro studies showed apoptosis induction in ATM-silenced/inhibited MPM spheroids treated with an enhancer of zeste homologue 2 inhibitor (tazemetostat). Conclusions: Overall these data suggest that patients with MPM and DNA repair insufficiency may benefit from this treatment, which induces synthetic lethality.
AB - Introduction: Malignant pleural mesothelioma (MPM) is a tumour associated with asbestos exposure. Approximately, 10% of patients with MPM carry a germline pathogenic variant (PV), mostly in DNA repair genes, suggesting the occurrence of inherited predispositions. Aim: This article aimed to 1) search for new predisposing genes and assess the prevalence of PVs in DNA repair genes, by next-generation sequencing (NGS) analysis of germline DNA from 113 unselected patients with MPM and 2) evaluate whether these patients could be sensitive to tailored treatments. Methods: NGS was performed using a custom panel of 107 cancer-predisposing genes. To investigate the response to selected drugs in conditions of DNA repair insufficiency, we created a three-dimensional-MPM cell model that had a defect in ataxia telangiectasia mutated (ATM), the master regulator of DNA repair. Results: We identified PVs in approximately 7% of patients with MPM (8/113) and a new PV in BAP1 in a further patient with familial MPM. Most of these PVs were in genes involved or supposedly involved in DNA repair (BRCA1, BRIP1, CHEK2, SLX4, FLCN and BAP1). In vitro studies showed apoptosis induction in ATM-silenced/inhibited MPM spheroids treated with an enhancer of zeste homologue 2 inhibitor (tazemetostat). Conclusions: Overall these data suggest that patients with MPM and DNA repair insufficiency may benefit from this treatment, which induces synthetic lethality.
KW - DNA repair genes
KW - Germline variants
KW - Mesothelioma
KW - Synthetic lethality
KW - Tazemetostat
UR - http://www.scopus.com/inward/record.url?scp=85122699060&partnerID=8YFLogxK
U2 - 10.1016/j.ejca.2021.12.023
DO - 10.1016/j.ejca.2021.12.023
M3 - Article
SN - 0959-8049
VL - 163
SP - 44
EP - 54
JO - European Journal of Cancer
JF - European Journal of Cancer
ER -