Linear discriminant classification tree: A user-driven multicriteria classification method

R. Todeschini, E. Marengo

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Todeschini, R. and Marengo, E., 1992. Linear discriminant classification tree: a user-driven multi-criteria classification method. Chemometrics and Intelligent Laboratory Systems. 16:25-35. A classification method, linear discriminant classification tree (LDCT), has been developed with particular attention to problem-driven solutions. It consists in the joint application of linear discriminant analysis (LDA) and classification tree methods. The population of each node is partitioned into two groups and classified using LDA which allows the introduction of multivariate binary classifiers. Thus the resulting classification trees are usually characterized by low complexity and ready interpretability. Several different trees can be obtained from the same data set: each tree can be cross-validated and a choice made on the basis of different criteria. This flexibility makes LDCT a really problem-driven classification method. Eight real data sets were used to test the method, and in all cases the results were good.

Lingua originaleInglese
pagine (da-a)25-35
Numero di pagine11
RivistaChemometrics and Intelligent Laboratory Systems
Volume16
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - set 1992

Fingerprint

Entra nei temi di ricerca di 'Linear discriminant classification tree: A user-driven multicriteria classification method'. Insieme formano una fingerprint unica.

Cita questo