Least energy solutions for critical growth equations with a lower order perturbation

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We study existence and nonexistence of least energy solutions of a quasilinear critical growth equation with degenerate m-Laplace operator in a bounded domain in ℝn with n > m > 1. Existence and nonexistence of solutions of this problem depend on a lower order perturbation and on the space dimension n. Our proofs are obtained with critical point theory and the lack of compactness, due to critical growth condition, is overcome by constructing minimax levels in a suitable compactness range.

Lingua originaleInglese
pagine (da-a)1167-1200
Numero di pagine34
RivistaAdvances in Differential Equations
Volume11
Numero di pubblicazione10
DOI
Stato di pubblicazionePubblicato - 2006
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Least energy solutions for critical growth equations with a lower order perturbation'. Insieme formano una fingerprint unica.

Cita questo