Abstract
We study existence and nonexistence of least energy solutions of a quasilinear critical growth equation with degenerate m-Laplace operator in a bounded domain in ℝn with n > m > 1. Existence and nonexistence of solutions of this problem depend on a lower order perturbation and on the space dimension n. Our proofs are obtained with critical point theory and the lack of compactness, due to critical growth condition, is overcome by constructing minimax levels in a suitable compactness range.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 1167-1200 |
Numero di pagine | 34 |
Rivista | Advances in Differential Equations |
Volume | 11 |
Numero di pubblicazione | 10 |
DOI | |
Stato di pubblicazione | Pubblicato - 2006 |
Pubblicato esternamente | Sì |