Learning profiles based on hierarchical hidden markov model

Ugo Galassi, Attilio Giordana, Lorenza Saitta, Maco Botta

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

This paper presents a method for automatically constructing a sophisticated user/process profile from traces of user/process behavior. User profile is encoded by means of a Hierarchical Hidden Markov Model (HHMM). The HHMM is a well formalized tool suitable to model complex patterns in long temporal or spatial sequences. The method described here is based on a recent algorithm, which is able to synthesize the HHMM structure from a set of logs of the user activity. The algorithm follows a bottom-up strategy, in which elementary facts in the sequences (motives) are progressively grouped, thus building the abstraction hierarchy of a HHMM, layer after layer. The method is firstly evaluated on artificial data. Then a user identification task, from real traces, is considered. A preliminary experimentation with several different users produced encouraging results.

Lingua originaleInglese
Titolo della pubblicazione ospiteFoundations of Intelligent Systems - 15th International Symposium, ISMIS 2005, Proceedings
EditoreSpringer Verlag
Pagine47-55
Numero di pagine9
ISBN (stampa)3540258787, 9783540258780
DOI
Stato di pubblicazionePubblicato - 2005
Pubblicato esternamente
Evento15th International Symposium on Methodologies for Intelligent Systems, ISMIS 2005 - Saratoga Springs, NY, United States
Durata: 25 mag 200528 mag 2005

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3488 LNAI
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???15th International Symposium on Methodologies for Intelligent Systems, ISMIS 2005
Paese/TerritorioUnited States
CittàSaratoga Springs, NY
Periodo25/05/0528/05/05

Fingerprint

Entra nei temi di ricerca di 'Learning profiles based on hierarchical hidden markov model'. Insieme formano una fingerprint unica.

Cita questo