Inversion of circulant matrices over Zm

Dario Bini, Gianna M. Del Corso, Giovanni Manzini, Luciano Margara

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper we consider the problem of inverting an n × n circulant matrix with entries over Zm. We show that the algorithm for inverting circulants, based on the reduction to diagonal form by means of FFT, has some drawbacks when working over Zm. We present three different algorithms which do not use this approach. Our algorithms require different degrees of knowledge of m and n, and their costs range, roughly, from n log n log log n to n log2 n log log n log m operations over Zm. Moreover, for each algorithm we give the cost in terms of bit operations. We also present an algorithm for the inversion of finitely generated bi-infinite Toeplitz matrices. The problems considered in this paper have applications to the theory of linear cellular automata.

Lingua originaleInglese
pagine (da-a)1169-1182
Numero di pagine14
RivistaMathematics of Computation
Volume70
Numero di pubblicazione235
DOI
Stato di pubblicazionePubblicato - lug 2001
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Inversion of circulant matrices over Zm'. Insieme formano una fingerprint unica.

Cita questo