TY - JOUR
T1 - Innovative superparamagnetic iron-oxide nanoparticles coated with silica and conjugated with linoleic acid
T2 - Effect on tumor cell growth and viability
AU - Muzio, Giuliana
AU - Miola, Marta
AU - Ferraris, Sara
AU - Maggiora, Marina
AU - Bertone, Elisa
AU - Puccinelli, Maria Paola
AU - Ricci, Marina
AU - Borroni, Ester
AU - Canuto, Rosa Angela
AU - Verné, Enrica
AU - Follenzi, Antonia
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/7/1
Y1 - 2017/7/1
N2 - One of the goals for the development of more effective cancer therapies with reduced toxic side effects is the optimization of innovative treatments to selectively kill tumor cells. The use of nanovectors loaded with targeted therapeutic payloads is one of the most investigated strategies. In this paper superparamagnetic iron oxide nanoparticles (SPIONs) coated by a silica shell or uncoated, were functionalized with single-layer and bi-layer conjugated linoleic acid (CLA). Silica was used to protect the magnetic core from oxidation, improve the stability of SPIONs and tailor their surface reactivity. CLA was used as novel grafting biomolecule for its anti-tumor activity and to improve particle dispersibility. Mouse breast cancer 4T1 cells were treated with these different SPIONs. SPIONs functionalized with the highest quantity of CLA and coated with silica shell were the most dispersed. Cell viability was reduced by SPIONs functionalized with CLA in comparison with cells which were untreated or treated with SPIONs without CLA. As regards the types of SPIONs functionalized with CLA, the lowest viability was observed in cells treated with uncoated SPIONs with the highest quantity of CLA. In conclusion, the silica shell free SPIONs functionalized with the highest amount of CLA can be suggested as therapeutic carriers because they have the best dispersion and ability to decrease 4T1 cell viability.
AB - One of the goals for the development of more effective cancer therapies with reduced toxic side effects is the optimization of innovative treatments to selectively kill tumor cells. The use of nanovectors loaded with targeted therapeutic payloads is one of the most investigated strategies. In this paper superparamagnetic iron oxide nanoparticles (SPIONs) coated by a silica shell or uncoated, were functionalized with single-layer and bi-layer conjugated linoleic acid (CLA). Silica was used to protect the magnetic core from oxidation, improve the stability of SPIONs and tailor their surface reactivity. CLA was used as novel grafting biomolecule for its anti-tumor activity and to improve particle dispersibility. Mouse breast cancer 4T1 cells were treated with these different SPIONs. SPIONs functionalized with the highest quantity of CLA and coated with silica shell were the most dispersed. Cell viability was reduced by SPIONs functionalized with CLA in comparison with cells which were untreated or treated with SPIONs without CLA. As regards the types of SPIONs functionalized with CLA, the lowest viability was observed in cells treated with uncoated SPIONs with the highest quantity of CLA. In conclusion, the silica shell free SPIONs functionalized with the highest amount of CLA can be suggested as therapeutic carriers because they have the best dispersion and ability to decrease 4T1 cell viability.
UR - http://www.scopus.com/inward/record.url?scp=85015340543&partnerID=8YFLogxK
U2 - 10.1016/j.msec.2017.03.063
DO - 10.1016/j.msec.2017.03.063
M3 - Article
SN - 0928-4931
VL - 76
SP - 439
EP - 447
JO - Materials Science and Engineering C
JF - Materials Science and Engineering C
ER -