TY - JOUR
T1 - Immortalized hippocampal astrocytes from 3xTg-AD mice, a new model to study disease-related astrocytic dysfunction
T2 - a comparative review
AU - Tapella, Laura
AU - Dematteis, Giulia
AU - Genazzani, Armando A.
AU - De Paola, Massimiliano
AU - Lim, Dmitry
N1 - Publisher Copyright:
© 2023 Wolters Kluwer Medknow Publications. All rights reserved.
PY - 2023/8
Y1 - 2023/8
N2 - Alzheimer’s disease (AD) is characterized by complex etiology, long-lasting pathogenesis, and celltype-specific alterations. Currently, there is no cure for AD, emphasizing the urgent need for a comprehensive understanding of cell-specific pathology. Astrocytes, principal homeostatic cells of the central nervous system, are key players in the pathogenesis of neurodegenerative diseases, including AD. Cellular models greatly facilitate the investigation of cell-specific pathological alterations and the dissection of molecular mechanisms and pathways. Tumor-derived and immortalized astrocytic cell lines, alongside the emerging technology of adult induced pluripotent stem cells, are widely used to study cellular dysfunction in AD. Surprisingly, no stable cell lines were available from genetic mouse AD models. Recently, we established immortalized hippocampal astroglial cell lines from amyloid-β precursor protein/presenilin-1/Tau triple-transgenic (3xTg)-AD mice (denominated as wild type (WT)- and 3Tg-iAstro cells) using retrovirus-mediated transduction of simian virus 40 large T-antigen and propagation without clonal selection, thereby maintaining natural heterogeneity of primary cultures. Several groups have successfully used 3Tg-iAstro cells for single-cell and omics approaches to study astrocytic AD-related alterations of calcium signaling, mitochondrial dysfunctions, disproteostasis, altered homeostatic and signaling support to neurons, and blood-brain barrier models. Here we provide a comparative overview of the most used models to study astrocytes in vitro, such as primary culture, tumor-derived cell lines, immortalized astroglial cell lines, and induced pluripotent stem cell-derived astrocytes. We conclude that immortalized WT- and 3Tg-iAstro cells provide a noncompetitive but complementary, low-cost, easy-to-handle, and versatile cellular model for dissection of astrocyte-specific AD-related alterations and preclinical drug discovery.
AB - Alzheimer’s disease (AD) is characterized by complex etiology, long-lasting pathogenesis, and celltype-specific alterations. Currently, there is no cure for AD, emphasizing the urgent need for a comprehensive understanding of cell-specific pathology. Astrocytes, principal homeostatic cells of the central nervous system, are key players in the pathogenesis of neurodegenerative diseases, including AD. Cellular models greatly facilitate the investigation of cell-specific pathological alterations and the dissection of molecular mechanisms and pathways. Tumor-derived and immortalized astrocytic cell lines, alongside the emerging technology of adult induced pluripotent stem cells, are widely used to study cellular dysfunction in AD. Surprisingly, no stable cell lines were available from genetic mouse AD models. Recently, we established immortalized hippocampal astroglial cell lines from amyloid-β precursor protein/presenilin-1/Tau triple-transgenic (3xTg)-AD mice (denominated as wild type (WT)- and 3Tg-iAstro cells) using retrovirus-mediated transduction of simian virus 40 large T-antigen and propagation without clonal selection, thereby maintaining natural heterogeneity of primary cultures. Several groups have successfully used 3Tg-iAstro cells for single-cell and omics approaches to study astrocytic AD-related alterations of calcium signaling, mitochondrial dysfunctions, disproteostasis, altered homeostatic and signaling support to neurons, and blood-brain barrier models. Here we provide a comparative overview of the most used models to study astrocytes in vitro, such as primary culture, tumor-derived cell lines, immortalized astroglial cell lines, and induced pluripotent stem cell-derived astrocytes. We conclude that immortalized WT- and 3Tg-iAstro cells provide a noncompetitive but complementary, low-cost, easy-to-handle, and versatile cellular model for dissection of astrocyte-specific AD-related alterations and preclinical drug discovery.
KW - Alzheimer’s disease
KW - astrocytes immortalization
KW - astroglial Alzheimers’s disease model
KW - blood-brain barrier
KW - calcium signaling
KW - central nervous system homeostasis
KW - disproteostasis
KW - endoplasmic reticulum-mitochondria contacts
KW - induced pluripotent stem cell-derived astrocytes
KW - protein synthesis
UR - http://www.scopus.com/inward/record.url?scp=85167569965&partnerID=8YFLogxK
U2 - 10.4103/1673-5374.363192
DO - 10.4103/1673-5374.363192
M3 - Review article
SN - 1673-5374
VL - 18
SP - 1672
EP - 1678
JO - Neural Regeneration Research
JF - Neural Regeneration Research
IS - 8
ER -