ICOS deficiency hampers the homeostasis, development and function of NK cells

María Montes-Casado1, Gloria Ojeda, Laura Aragoneses-Fenoll, Daniel López, Belén De Andrés, María Luisa Gaspar, Umberto Dianzani, José M. Rojo, Pilar Portolés

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Signaling through the inducible costimulator ICOS is required for the homeostasis and function of various immune cell populations, with an outstanding role in the generation and maintenance of germinal centers. Very recently, it has been suggested that the clinical phenotype of ICOS-deficient patients is much broader than initially anticipated and the innate immune response might be also affected. However, the role of the ICOS/ICOS-Ligand axis in the homeostasis and development of innate NK cells is not known, and reports on its participation in NK cell activation are scarce. NK cells may express low levels of ICOS that are markedly enhanced upon activation. We show here that ICOS-deficient (ICOS-KO) mice present low NK cell numbers and defects in the homeostasis of these cells, with delayed maturation and altered expression of the developmental NK cell markers CD122, NK1.1, CD11b or CD27. Our experiments in mixed bone marrow chimera mice indicate that, both, cell-intrinsic defects of ICOS-KO NK and deficiencies in the milieu of these mice contribute to the altered phenotype. ICOS-deficient NK cells show impaired production of IFN-γ and cytotoxicity, and a final outcome of defects in NK cell-mediated effector function during the response to poly(I:C) or vaccinia virus infection in vivo. Interestingly, we show that murine innate cells like IL-2-cultured NK and bone marrow-derived dendritic cells can simultaneously express ICOS and ICOS-Ligand; both molecules are functional in NK intracellular signaling, enhancing early phosphorylation of Akt and Erk, or IFN-γ secretion in IL-2-activated NK cells. Our study shows the functional importance of the ICOS/ICOS-L pair in NK cell homeostasis, differentiation and activity and suggests novel therapeutic targets for NK manipulation.

Lingua originaleInglese
Numero di articoloe0219449
RivistaPLoS ONE
Volume14
Numero di pubblicazione7
DOI
Stato di pubblicazionePubblicato - 1 lug 2019

Fingerprint

Entra nei temi di ricerca di 'ICOS deficiency hampers the homeostasis, development and function of NK cells'. Insieme formano una fingerprint unica.

Cita questo