Hypothesis diversity in ensemble classification

Lorenza Saitta

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

The paper discusses the issue of hypothesis diversity in ensemble classifiers. The measures of diversity previously proposed in the literature are analyzed inside a unifying framework based on Monte Carlo stochastic algorithms. The paper shows that no measure is useful to predict ensemble performance, because all of them have only a very loose relation with the expected accuracy of the classifier.

Lingua originaleInglese
Titolo della pubblicazione ospiteFoundations of Intelligent Systems - 16th International Symposium, ISMIS 2006, Proceedings
EditoreSpringer Verlag
Pagine662-670
Numero di pagine9
ISBN (stampa)354045764X, 9783540457640
DOI
Stato di pubblicazionePubblicato - 2006
Pubblicato esternamente
Evento16th International Symposium on Methodologies for Intelligent Systems, ISMIS 2006 - Bari, Italy
Durata: 27 set 200629 set 2006

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume4203 LNAI
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???16th International Symposium on Methodologies for Intelligent Systems, ISMIS 2006
Paese/TerritorioItaly
CittàBari
Periodo27/09/0629/09/06

Fingerprint

Entra nei temi di ricerca di 'Hypothesis diversity in ensemble classification'. Insieme formano una fingerprint unica.

Cita questo