Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: An in vivo study

Gianluca Giavaresi, Luigi Ambrosio, Giovanni A. Battiston, Umberto Casellato, Rosalba Gerbasi, Milena Finia, Nicolò Nicoli Aldini, Lucia Martini, Lia Rimondini, Roberto Giardino

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Over the past decade the increase of elderly population has determined a rise in the incidence of bone fractures, and the improvement of the implant-bone interface remains an open problem. Metal-organic chemical vapour deposition (MOCVD) has recently been proposed as a technique to coat orthopaedic and dental prostheses with metal nanostructured oxide films either through the decomposition of oxygenated compounds (single-source precursors) or the reaction of oxygen-free metal compounds with oxygenating agents. The present study was performed to assess the in vivo biocompatibility of commercially pure Ti (control material: TI/MA) implants (∅ 2mm×5mm length) coated with nanostructured TiO2 films by MOCVD (Ti/MOCVD) and then inserted into rabbit femoral cortical (middhiaphysis) and cancellous (distal epiphysis) bone. Histomorphometric, ultrastructural and microhardness investigations were carried out. Four and 12 weeks after surgery, significant (p<0.0005) increases in AI of Ti/MOCVD implants were observed as compared to Ti/MA implants (distal femoral epiphysis: 4 weeks=8.2%, ns; 12 weeks=52.3%, p<0.005; femoral diaphysis: 4 weeks=20.2%, p<0.0005; 12 weeks=10.7%, p<0.005). Bone microhardness results showed significant increases for the Ti/MOCVD versus Ti/MA implants at 200μm in the femoral diaphysis (4 weeks=14.2, p<0.005) and distal femoral epiphysis (12 weeks=14.5, p<0.01) at 4 and 12 weeks, respectively. In conclusion, the current findings demonstrate that the nanostructured TiO2 coating positively affects the osseointegration rate of commercially pure Ti implants and the bone mineralization at the bone-biomaterial interface in both cortical and cancellous bone.

Lingua originaleInglese
pagine (da-a)5583-5591
Numero di pagine9
RivistaBiomaterials
Volume25
Numero di pubblicazione25
DOI
Stato di pubblicazionePubblicato - nov 2004
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: An in vivo study'. Insieme formano una fingerprint unica.

Cita questo