Hilbert transform, spectral filters and option pricing

Carolyn E. Phelan, Daniele Marazzina, Gianluca Fusai, Guido Germano

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We show how spectral filters can improve the convergence of numerical schemes which use discrete Hilbert transforms based on a sinc function expansion, and thus ultimately on the fast Fourier transform. This is relevant, for example, for the computation of fluctuation identities, which give the distribution of the maximum or the minimum of a random path, or the joint distribution at maturity with the extrema staying below or above barriers. We use as examples the methods by Feng and Linetsky (Math Finance 18(3):337–384, 2008) and Fusai et al. (Eur J Oper Res 251(4):124–134, 2016) to price discretely monitored barrier options where the underlying asset price is modelled by an exponential Lévy process. Both methods show exponential convergence with respect to the number of grid points in most cases, but are limited to polynomial convergence under certain conditions. We relate these rates of convergence to the Gibbs phenomenon for Fourier transforms and achieve improved results with spectral filtering.

Lingua originaleInglese
pagine (da-a)273-298
Numero di pagine26
RivistaAnnals of Operations Research
Volume282
Numero di pubblicazione1-2
DOI
Stato di pubblicazionePubblicato - 1 nov 2019
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Hilbert transform, spectral filters and option pricing'. Insieme formano una fingerprint unica.

Cita questo