TY - JOUR
T1 - HashClone
T2 - A new tool to quantify the minimal residual disease in B-cell lymphoma from deep sequencing data
AU - Beccuti, Marco
AU - Genuardi, Elisa
AU - Romano, Greta
AU - Monitillo, Luigia
AU - Barbero, Daniela
AU - Boccadoro, Mario
AU - Ladetto, Marco
AU - Calogero, Raffaele
AU - Ferrero, Simone
AU - Cordero, Francesca
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/11/23
Y1 - 2017/11/23
N2 - Background: Mantle Cell Lymphoma (MCL) is a B cell aggressive neoplasia accounting for about the 6% of all lymphomas. The most common molecular marker of clonality in MCL, as in other B lymphoproliferative disorders, is the ImmunoGlobulin Heavy chain (IGH) rearrangement, occurring in B-lymphocytes. The patient-specific IGH rearrangement is extensively used to monitor the Minimal Residual Disease (MRD) after treatment through the standardized Allele-Specific Oligonucleotides Quantitative Polymerase Chain Reaction based technique. Recently, several studies have suggested that the IGH monitoring through deep sequencing techniques can produce not only comparable results to Polymerase Chain Reaction-based methods, but also might overcome the classical technique in terms of feasibility and sensitivity. However, no standard bioinformatics tool is available at the moment for data analysis in this context. Results: In this paper we present HashClone, an easy-to-use and reliable bioinformatics tool that provides B-cells clonality assessment and MRD monitoring over time analyzing data from Next-Generation Sequencing (NGS) technique. The HashClone strategy-based is composed of three steps: the first and second steps implement an alignment-free prediction method that identifies a set of putative clones belonging to the repertoire of the patient under study. In the third step the IGH variable region, diversity region, and joining region identification is obtained by the alignment of rearrangements with respect to the international ImMunoGenetics information system database. Moreover, a provided graphical user interface for HashClone execution and clonality visualization over time facilitate the tool use and the results interpretation. The HashClone performance was tested on the NGS data derived from MCL patients to assess the major B-cell clone in the diagnostic samples and to monitor the MRD in the real and artificial follow up samples. Conclusions: Our experiments show that in all the experimental settings, HashClone was able to correctly detect the major B-cell clones and to precisely follow them in several samples showing better accuracy than the state-of-art tool.
AB - Background: Mantle Cell Lymphoma (MCL) is a B cell aggressive neoplasia accounting for about the 6% of all lymphomas. The most common molecular marker of clonality in MCL, as in other B lymphoproliferative disorders, is the ImmunoGlobulin Heavy chain (IGH) rearrangement, occurring in B-lymphocytes. The patient-specific IGH rearrangement is extensively used to monitor the Minimal Residual Disease (MRD) after treatment through the standardized Allele-Specific Oligonucleotides Quantitative Polymerase Chain Reaction based technique. Recently, several studies have suggested that the IGH monitoring through deep sequencing techniques can produce not only comparable results to Polymerase Chain Reaction-based methods, but also might overcome the classical technique in terms of feasibility and sensitivity. However, no standard bioinformatics tool is available at the moment for data analysis in this context. Results: In this paper we present HashClone, an easy-to-use and reliable bioinformatics tool that provides B-cells clonality assessment and MRD monitoring over time analyzing data from Next-Generation Sequencing (NGS) technique. The HashClone strategy-based is composed of three steps: the first and second steps implement an alignment-free prediction method that identifies a set of putative clones belonging to the repertoire of the patient under study. In the third step the IGH variable region, diversity region, and joining region identification is obtained by the alignment of rearrangements with respect to the international ImMunoGenetics information system database. Moreover, a provided graphical user interface for HashClone execution and clonality visualization over time facilitate the tool use and the results interpretation. The HashClone performance was tested on the NGS data derived from MCL patients to assess the major B-cell clone in the diagnostic samples and to monitor the MRD in the real and artificial follow up samples. Conclusions: Our experiments show that in all the experimental settings, HashClone was able to correctly detect the major B-cell clones and to precisely follow them in several samples showing better accuracy than the state-of-art tool.
KW - Clonality assessment
KW - Hash-based algorithm
KW - Minimal residual disease monitoring
UR - http://www.scopus.com/inward/record.url?scp=85035222304&partnerID=8YFLogxK
U2 - 10.1186/s12859-017-1923-2
DO - 10.1186/s12859-017-1923-2
M3 - Article
SN - 1471-2105
VL - 18
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - 1
M1 - 516
ER -