Growth arrest specific 6 - Feasible marker for septic patients and potential architect in the improvement of sepsis-induced organ damage in mice

Livia Salmi

Risultato della ricerca: Tipi di tesiTesi di dottorato

Abstract

Sepsis is a widespread life-threatening disease, with a high mortality rate due to inflammation-induced multiorgan failure (MOF). Thus, new effective modulators of the immune response are urgently needed to ameliorate the outcome of septic patients. As growth arrest-specific gene 6 (Gas6)/Tyro3, Axl, MerTK (TAM) receptors signaling has shown immunomodulatory activity in sepsis, here we sought to determine whether Gas6 protein injection could mitigate MOF in a cecal slurry mouse model of sepsis. Mice, divided into different groups according to treatment-i.e., septic (B), ampicillin (BA), Gas6 alone (BG), and ampicillin plus Gas6 (BAG)-were assessed for vitality, histopathology and cytokine expression profile as well as inducible nitric oxide synthase (iNOS), ALT and LDH levels. BAG-treated mice displayed milder kidney and lung damage and reduced levels of cytokine expression and iNOS in the lungs compared to BA-treated mice. Notably, BAG-treated mice showed lower LDH levels compared to controls. Lastly, BAG-treated cells of dendritic, endothelial or monocytic origin displayed reduced ROS formation and increased cell viability, with a marked upregulation of mitochondrial activity. Altogether, our findings indicate that combined treatment with Gas6 and antibiotics ameliorates sepsis-induced organ damage and reduces systemic LDH levels in mice, suggesting that Gas6 intravenous injection may be a viable therapeutic option in sepsis.
Lingua originaleInglese
Istituzione conferente
  • Universita' degli Studi del Piemonte Orientale "Amedeo Avogadro"
Supervisori/Consulenti
  • AVANZI, Gian Carlo, Relatore
DOI
Stato di pubblicazionePubblicato - 2021
Pubblicato esternamente

Keywords

  • Gas6
  • Sepsis
  • TAM receptors

Fingerprint

Entra nei temi di ricerca di 'Growth arrest specific 6 - Feasible marker for septic patients and potential architect in the improvement of sepsis-induced organ damage in mice'. Insieme formano una fingerprint unica.

Cita questo