TY - JOUR
T1 - Genetic predisposition to myelodysplastic syndromes
T2 - A challenge for adult hematologists
AU - Crisà, Elena
AU - Boggione, Paola
AU - Nicolosi, Maura
AU - Mahmoud, Abdurraouf Mokhtar
AU - Essa, Wael Al
AU - Awikeh, Bassel
AU - Aspesi, Anna
AU - Andorno, Annalisa
AU - Boldorini, Renzo
AU - Dianzani, Irma
AU - Gaidano, Gianluca
AU - Patriarca, Andrea
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - Myelodysplastic syndromes (MDS) arising in the context of inherited bone marrow failure syndromes (IBMFS) differ in terms of prognosis and treatment strategy compared to MDS occurring in the adult population without an inherited genetic predisposition. The main molecular pathways affected in IBMFS involve telomere maintenance, DNA repair, biogenesis of ribosomes, control of proliferation and others. The increased knowledge on the genes involved in MDS pathogenesis and the wider availability of molecular diagnostic assessment have led to an improvement in the detection of IBMFS genetic predisposition in MDS patients. A punctual recognition of these disorders implies a strict surveillance of the patient in order to detect early signs of progression and promptly offer allogeneic hematopoietic stem cell transplantation, which is the only curative treatment. Moreover, identifying an inherited mutation allows the screening and counseling of family members and directs the choice of donors in case of need for transplantation. Here we provide an overview of the most recent data on MDS with genetic predisposition highlighting the main steps of the diagnostic and therapeutic management. In order to highlight the pitfalls of detecting IBMFS in adults, we report the case of a 27-year-old man affected by MDS with an underlying telomeropathy.
AB - Myelodysplastic syndromes (MDS) arising in the context of inherited bone marrow failure syndromes (IBMFS) differ in terms of prognosis and treatment strategy compared to MDS occurring in the adult population without an inherited genetic predisposition. The main molecular pathways affected in IBMFS involve telomere maintenance, DNA repair, biogenesis of ribosomes, control of proliferation and others. The increased knowledge on the genes involved in MDS pathogenesis and the wider availability of molecular diagnostic assessment have led to an improvement in the detection of IBMFS genetic predisposition in MDS patients. A punctual recognition of these disorders implies a strict surveillance of the patient in order to detect early signs of progression and promptly offer allogeneic hematopoietic stem cell transplantation, which is the only curative treatment. Moreover, identifying an inherited mutation allows the screening and counseling of family members and directs the choice of donors in case of need for transplantation. Here we provide an overview of the most recent data on MDS with genetic predisposition highlighting the main steps of the diagnostic and therapeutic management. In order to highlight the pitfalls of detecting IBMFS in adults, we report the case of a 27-year-old man affected by MDS with an underlying telomeropathy.
KW - Genetic predisposition
KW - Inherited bone marrow failure
KW - Myelodysplastic syndromes
UR - http://www.scopus.com/inward/record.url?scp=85101807661&partnerID=8YFLogxK
U2 - 10.3390/ijms22052525
DO - 10.3390/ijms22052525
M3 - Review article
SN - 1661-6596
VL - 22
SP - 1
EP - 19
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 5
M1 - 2525
ER -