TY - JOUR
T1 - Generalized skew derivations on Lie ideals in prime rings
AU - Khan, Shahoor
N1 - Publisher Copyright:
© 2018, Springer-Verlag Italia S.r.l., part of Springer Nature.
PY - 2019/4/5
Y1 - 2019/4/5
N2 - Let R be a prime ring of characteristic different from 2 and 3, L a noncentral Lie ideal of R, F a nonzero generalized skew derivation of R and n≥ 1 be a fixed integer such that [F(u) , u] n = 0 for all u∈ L. Suppose that R does not satisfy s 4 , then either there exists an element a in C such that F(x) = ax for all x∈ R or there exists a∈ C and b∈ Q such that F(x) = ax+ [b, x] for all x∈ R.
AB - Let R be a prime ring of characteristic different from 2 and 3, L a noncentral Lie ideal of R, F a nonzero generalized skew derivation of R and n≥ 1 be a fixed integer such that [F(u) , u] n = 0 for all u∈ L. Suppose that R does not satisfy s 4 , then either there exists an element a in C such that F(x) = ax for all x∈ R or there exists a∈ C and b∈ Q such that F(x) = ax+ [b, x] for all x∈ R.
KW - Automorphism
KW - Generalized skew derivation
KW - Prime ring
KW - Skew derivation
UR - http://www.scopus.com/inward/record.url?scp=85062981954&partnerID=8YFLogxK
U2 - 10.1007/s12215-018-0352-z
DO - 10.1007/s12215-018-0352-z
M3 - Article
SN - 0009-725X
VL - 68
SP - 219
EP - 225
JO - Rendiconti del Circolo Matematico di Palermo
JF - Rendiconti del Circolo Matematico di Palermo
IS - 1
ER -