Functional nonparametric model for time series: A fractal approach for dimension reduction

Frédéric Ferraty, Aldo Goia, Philippe Vieu

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper we propose a functional nonparametric model for time series prediction. The originality of this model consists in using as predictor a continuous set of past values. This time series problem is presented in the general framework of regression estimation from dependent samples with regressor valued in some infinite dimensional semi-normed vectorial space. The curse of dimensionality induced by our approach is overridden by means of fractal dimension considerations. We give asymptotics for a kernel type nonparametric predictor linking the rates of convergence with the fractal dimension of the functional process. Finally, our method has been implemented and applied to some electricity consumption data.

Lingua originaleInglese
pagine (da-a)317-344
Numero di pagine28
RivistaTest
Volume11
Numero di pubblicazione2
DOI
Stato di pubblicazionePubblicato - dic 2002

Fingerprint

Entra nei temi di ricerca di 'Functional nonparametric model for time series: A fractal approach for dimension reduction'. Insieme formano una fingerprint unica.

Cita questo