Fluctuation identities with continuous monitoring and their application to the pricing of barrier options

Carolyn E. Phelan, Daniele Marazzina, Gianluca Fusai, Guido Germano

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We present a numerical scheme to calculate fluctuation identities for exponential Lévy processes in the continuous monitoring case. This includes the Spitzer identities for touching a single upper or lower barrier, and the more difficult case of the two-barriers exit problem. These identities are given in the Fourier-Laplace domain and require numerical inverse transforms. Thus we cover a gap in the literature that has mainly studied the discrete monitoring case; indeed, there are no existing numerical methods that deal with the continuous case. As a motivating application we price continuously monitored barrier options with the underlying asset modelled by an exponential Lévy process. We perform a detailed error analysis of the method and develop error bounds to show how the performance is limited by the truncation error of the sinc-based fast Hilbert transform used for the Wiener–Hopf factorisation. By comparing the results for our new technique with those for the discretely monitored case (which is in the Fourier-z domain) as the monitoring time step approaches zero, we show that the error convergence with continuous monitoring represents a limit for the discretely monitored scheme.

Lingua originaleInglese
pagine (da-a)210-223
Numero di pagine14
RivistaEuropean Journal of Operational Research
Volume271
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - 16 nov 2018

Fingerprint

Entra nei temi di ricerca di 'Fluctuation identities with continuous monitoring and their application to the pricing of barrier options'. Insieme formano una fingerprint unica.

Cita questo