Experimental comparison between bagging and Monte Carlo ensemble classification

Roberto Esposito, Lorenza Saitta

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

Properties of ensemble classification can be studied using the framework of Monte Carlo stochastic algorithms. Within this frame-work it is also possible to define a new ensemble classifier, whose accuracy probability distribution can be computed exactly. This paper has two goals: first, an experimental comparison between the theoretical predictions and experimental results; second, a systematic comparison between bagging and Monte Carlo ensemble classification.

Lingua originaleInglese
Titolo della pubblicazione ospiteICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
EditorL. Raedt, S. Wrobel
Pagine209-216
Numero di pagine8
DOI
Stato di pubblicazionePubblicato - 2005
Pubblicato esternamente
EventoICML 2005: 22nd International Conference on Machine Learning - Bonn, Germany
Durata: 7 ago 200511 ago 2005

Serie di pubblicazioni

NomeICML 2005 - Proceedings of the 22nd International Conference on Machine Learning

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???ICML 2005: 22nd International Conference on Machine Learning
Paese/TerritorioGermany
CittàBonn
Periodo7/08/0511/08/05

Fingerprint

Entra nei temi di ricerca di 'Experimental comparison between bagging and Monte Carlo ensemble classification'. Insieme formano una fingerprint unica.

Cita questo