Abstract
A semilinear elliptic problem containing both a singularity and a critical growth term is considered in a bounded domain of δrn: existence results are obtained by variational methods. The solvability of the problem depends on the space dimension n and on the coefficient of the singularity; the results obtained describe the behavior of critical dimensions and nonresonant dimensions when the Brezis-Nirenberg problem is modified with a singular term.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 494-522 |
Numero di pagine | 29 |
Rivista | Journal of Differential Equations |
Volume | 177 |
Numero di pubblicazione | 2 |
DOI | |
Stato di pubblicazione | Pubblicato - 10 gen 2001 |