Double exponential inseparability of Robinson subsystem Q+

Lavinia EGIDI, G. FAGLIA

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Journal of Symbolic Logic Volume 76, Issue 1, March 2011, Pages 94-124 Double-exponential inseparability of robinson subsystem (Article) Egidi, L. , Faglia, G. Dipartimento di Informatica, Università del Piemonte Orientale A. Avogadro, Viale T. Michel.11, 15121 Alessandria, Italy View references (20) Abstract In this work a double exponential time inseparability result is proven for a finitely axiomatizable first order theory Q+. The theory, subset of Presburger theory of addition S+, is the additive fragment of Robinson system Q. We prove that every set that separates Q+ from the logically false sentences of addition is not recognizable by any Turing machine working in double exponential time. The lower bound is given both in the non-deterministic and in the linear alternating time models. The result implies also that any theory of addition that is consistent with Q+-in particular any theory contained in S+-is at least double exponential time difficult. Our inseparability result is an improvement on the known lower bounds for arithmetic theories. Our proof uses a refinement and adaptation of the technique that Fischer and Rabin used to prove the difficulty of S +. Our version of the technique can be applied to any incomplete finitely axiomatizable system in which all of the necessary properties of addition are provable.
Lingua originaleInglese
pagine (da-a)94-124
Numero di pagine31
RivistaTHE JOURNAL OF SYMBOLIC LOGIC
Volume76
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - 2011

Keywords

  • Inseparability
  • Lower bound
  • Robinson system

Fingerprint

Entra nei temi di ricerca di 'Double exponential inseparability of Robinson subsystem Q+'. Insieme formano una fingerprint unica.

Cita questo