Development of calibration models for quality control in the production of ethylene/propylene copolymers by FTIR spectroscopy, multivariate statistical tools, and artificial neural networks

Emilio Marengo, Valentina Longo, Elisa Robotti, Marco Bobba, Fabio Gosetti, Orfeo Zerbinati, Silvana Di Martino

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Principal component regression (PCR), partial least squares (PLS), StepWise ordinary least squares regression (OLS), and back-propagation artificial neural network (BP-ANN) are applied here for the determination of the propylene concentration of a set of 83 production samples of ethylene-propylene copolymers from their infrared spectra. The set of available samples was split into (a) a training set, for models calculation; (b) a test set, for selecting the correct number of latent variables in PCR and PLS and the end point of the training phase of BP-ANN; (c) a production set, for evaluating the predictive ability of the models. The predictive ability of the models is thus evaluated by genuine predictions. The model obtained by StepWise OLS turned out to be the best one, both in fitting and prediction. The study of the breakdown number of samples to be included in the training set showed that at least 52 experiments are necessary to build a reliable and predictive calibration model. It can be concluded that FTIR spectroscopy and OLS can be properly employed for monitoring the synthesis or the final product of ethylene-propylene copolymers, by predicting the concentration of propylene directly along the process line.

Lingua originaleInglese
pagine (da-a)3975-3982
Numero di pagine8
RivistaJournal of Applied Polymer Science
Volume109
Numero di pubblicazione6
DOI
Stato di pubblicazionePubblicato - 15 set 2008

Fingerprint

Entra nei temi di ricerca di 'Development of calibration models for quality control in the production of ethylene/propylene copolymers by FTIR spectroscopy, multivariate statistical tools, and artificial neural networks'. Insieme formano una fingerprint unica.

Cita questo