Deriving Symbolic Ordinary Differential Equations from Stochastic Symmetric Nets Without Unfolding

Marco Beccuti, Lorenzo Capra, Massimiliano De Pierro, Giuliana Franceschinis, Simone Pernice

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

This paper concerns the quantitative evaluation of Stochastic Symmetric Nets (SSN) by means of a fluid approximation technique particularly suited to analyse systems with a huge state space. In particular a new efficient approach is proposed to derive the deterministic process approximating the original stochastic process through a system of Ordinary Differential Equations (ODE). The intrinsic symmetry of SSN models is exploited to significantly reduce the size of the ODE system while a symbolic calculus operating on the SSN arc functions is employed to derive such system efficiently, avoiding the complete unfolding of the SSN model into a Stochastic Petri Net (SPN).

Lingua originaleInglese
Titolo della pubblicazione ospiteComputer Performance Engineering - 15th European Workshop, EPEW 2018, Proceedings
EditorAnne Remke, Paolo Ballarini, Benoît Barbot, Rena Bakhshi, Hind Castel-Taleb
EditoreSpringer Verlag
Pagine30-45
Numero di pagine16
ISBN (stampa)9783030022266
DOI
Stato di pubblicazionePubblicato - 2018
Evento15th European Performance Engineering Workshop, EPEW 2018 - Paris, France
Durata: 29 ott 201830 ott 2018

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11178 LNCS
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???15th European Performance Engineering Workshop, EPEW 2018
Paese/TerritorioFrance
CittàParis
Periodo29/10/1830/10/18

Fingerprint

Entra nei temi di ricerca di 'Deriving Symbolic Ordinary Differential Equations from Stochastic Symmetric Nets Without Unfolding'. Insieme formano una fingerprint unica.

Cita questo