Dependability assessment of an industrial programmable logic controller via parametric fault-tree and high level Petri net

Risultato della ricerca: Contributo alla conferenzaContributo in Atti di Convegnopeer review

Abstract

The case-study presented in this paper is aimed at assessing the dependability of a Programmable Logic Controller (PLC) devoted to safety functions. This case study has been brought to our attention by a national environmental agency and has been partially abstracted and anonymized to protect proprietary information. The PLC consists of a triplicated channel with a (2 ; 3) majority voting logic and is modeled by means of a recently proposed extension of the classical Fault Tree (FT) formalism called Parametric Fault Tree (PFT). In the PFT replicated units are folded and Parameterized so that only one representative of the various similar replicas is explicitly included in the model. The quantitative analysis of the PFT assumes s-independence among components and is based on combinatorial formulas. In order to include dependencies both in the failure and repair process, the PFT is directly converted into a particular class of High Level Petri Nets, called SWN. The paper illustrates the PFT formalism and the automatic conversion algorithm from a PFT into a SWN. Moreovel; it is shown how various kind of dependencies can be accommodated in the obtained SWN model
Lingua originaleInglese
Pagine29-38
Numero di pagine10
Stato di pubblicazionePubblicato - 2001
Evento9th International Workshop on Petri Nets and Performance Models - Aachen, Germany
Durata: 1 gen 2001 → …

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???9th International Workshop on Petri Nets and Performance Models
CittàAachen, Germany
Periodo1/01/01 → …

Keywords

  • Dependability Analysis
  • Parametric Fault Trees
  • Stochastic well-formed Petri nets

Fingerprint

Entra nei temi di ricerca di 'Dependability assessment of an industrial programmable logic controller via parametric fault-tree and high level Petri net'. Insieme formano una fingerprint unica.

Cita questo