TY - GEN
T1 - DBNet, a tool to convert Dynamic Fault Trees into Dynamic Bayesian Networks
AU - MONTANI, Stefania
AU - PORTINALE, Luigi
AU - BOBBIO, ANDREA
AU - Marco, VARESIO
AU - CODETTA RAITERI, Daniele
PY - 2005/1/1
Y1 - 2005/1/1
N2 - The unreliability evaluation of a system including dependencies involving
the state of components or the failure events, can be performed by modelling the system as a Dynamic Fault Tree (DFT). The combinatorial technique used to solve standard Fault Trees is not suitable for the analysis of a DFT. The conversion into a Dynamic Bayesian Network (DBN) is a way to analyze a DFT. This paper presents a software tool allowing the automatic analysis of a DFTexploiting its conversion to a DBN. First, the architecture of the tool is described, together with the rules implemented in the tool, to convert dynamic gates in DBNs. Then, the tool is tested on a case of system: its DFT model and the corresponding DBN are provided and analyzed by means of the tool. The obtained unreliability results are compared with those returned by other tools, in order to verify their correctness. Moreover, the use of DBNs allows to compute further results on the model, such as diagnostic and sensitivity indices.
AB - The unreliability evaluation of a system including dependencies involving
the state of components or the failure events, can be performed by modelling the system as a Dynamic Fault Tree (DFT). The combinatorial technique used to solve standard Fault Trees is not suitable for the analysis of a DFT. The conversion into a Dynamic Bayesian Network (DBN) is a way to analyze a DFT. This paper presents a software tool allowing the automatic analysis of a DFTexploiting its conversion to a DBN. First, the architecture of the tool is described, together with the rules implemented in the tool, to convert dynamic gates in DBNs. Then, the tool is tested on a case of system: its DFT model and the corresponding DBN are provided and analyzed by means of the tool. The obtained unreliability results are compared with those returned by other tools, in order to verify their correctness. Moreover, the use of DBNs allows to compute further results on the model, such as diagnostic and sensitivity indices.
UR - https://iris.uniupo.it/handle/11579/19229
M3 - Altro contributo
ER -