Cortico-motoneurone excitability in patients with obstructive sleep apnoea

Carlo Civardi, Paola Naldi, Roberto Cantello

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

A disordered neuromotor control of pharynx muscles may play a role in the genesis of obstructive sleep apnoea syndrome (OSAS). This raises the possibility of a dysfunction of projections descending from the cortex to segmental nuclei. With single pulse transcranial magnetic stimulation (TMS) we studied the physiology of the corticospinal projection to hand muscles in seven OSAS patients. At first, we compared them with nine age- and sex-matched normal controls in the wake state. The only abnormality was a lengthening of the central silent period (P < 0.001). This supports a steady imbalance of motor cortical interneurone activities towards a state of enhanced inhibition. Then we looked at changes of the motor-evoked potential (MEP) size and latency, according to whether patients were awake, or in a non-rapid eye movement (REM) 2 sleep stage, or during a typical apnoea. During non-REM 2 sleep, the average MEP amplitude was significantly (P < 0.05) smaller than in the awake state. The MEP latency was, in turn, significantly longer (P < 0.05). During apnoeas, the MEP size decreased, and the latency increased further (P < 0.05), indicating an extra depression of the corticomotoneuronal activity. All TMS changes were detected outside the pharyngeal district, suggesting a widespread dysfunction of the cortico-motoneuronal system in the OSAS, which is more evident during apnoeas.

Lingua originaleInglese
pagine (da-a)159-163
Numero di pagine5
RivistaJournal of Sleep Research
Volume13
Numero di pubblicazione2
DOI
Stato di pubblicazionePubblicato - giu 2004

Fingerprint

Entra nei temi di ricerca di 'Cortico-motoneurone excitability in patients with obstructive sleep apnoea'. Insieme formano una fingerprint unica.

Cita questo