Computing Cumulative Measures of Stiff Markov Chains Using Aggregation

Andrea Bobbio, Kishor Trivedi

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We present an aggregation method for the computation of transient cumulative measures of large, stiff Markov models. The method is based on the classification of the states of the original problem into slow, fast transient, and fast recurrent states. We aggregate fast transient states and fast recurrent states so that an approximate value to the desired cumulative measure can be obtained by solving a nonstiff set of linear differential equations defined over a reduced subset of slow states only. Several examples are included to illustrate how stiffness arises naturally in actual queueing and reliability models, and to show that cumulative measures provide a better characterization of the time dependent system behavior.

Lingua originaleInglese
pagine (da-a)1291-1298
Numero di pagine8
RivistaIEEE Transactions on Computers
Volume39
Numero di pubblicazione10
DOI
Stato di pubblicazionePubblicato - ott 1990
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Computing Cumulative Measures of Stiff Markov Chains Using Aggregation'. Insieme formano una fingerprint unica.

Cita questo