TY - JOUR
T1 - Comparison of strategy signals in the dorsolateral and orbital prefrontal cortex
AU - Tsujimoto, S.
AU - GENOVESIO, ALDO
AU - Wise, S. P.
PY - 2011
Y1 - 2011
N2 - Abstract behavior-guiding rules and strategies allow monkeys to avoid errors in rarely encountered situations. In the present study, we contrasted strategy-related neuronal activity in the dorsolateral prefrontal cortex (PFdl) and the orbital prefrontal cortex (PFo) of rhesus monkeys. On each trial of their behavioral task, the monkeys responded to a foveal visual cue by making a saccade to one of two spatial targets. One response required a leftward saccade, the other required a saccade of equal magnitude to the right. The cues instructed the monkeys to follow one of two response strategies: to stay with their most recent successful response or to shift to the alternative response. Neurons in both areas encoded the stay and shift strategies after the cue appeared, but there were three major differences between the PFo and the PFdl: (1) many strategy-encoding cells in PFdl also encoded the response (left or right), but few, if any, PFo cells did so; (2) strategy selectivity appeared earlier in PFo than in PFdl; and (3) on error trials, PFo neurons encoded the correct strategy - the one that had been cued but not implemented - whereas in PFdl the strategy signals were weak or absent on error trials. These findings indicate that PFo and PFdl both contribute to behaviors guided by abstract response strategies, but do so differently, with PFo encoding a strategy and PFdl encoding a response based on a strategy. Copyright © 2011 the authors.
AB - Abstract behavior-guiding rules and strategies allow monkeys to avoid errors in rarely encountered situations. In the present study, we contrasted strategy-related neuronal activity in the dorsolateral prefrontal cortex (PFdl) and the orbital prefrontal cortex (PFo) of rhesus monkeys. On each trial of their behavioral task, the monkeys responded to a foveal visual cue by making a saccade to one of two spatial targets. One response required a leftward saccade, the other required a saccade of equal magnitude to the right. The cues instructed the monkeys to follow one of two response strategies: to stay with their most recent successful response or to shift to the alternative response. Neurons in both areas encoded the stay and shift strategies after the cue appeared, but there were three major differences between the PFo and the PFdl: (1) many strategy-encoding cells in PFdl also encoded the response (left or right), but few, if any, PFo cells did so; (2) strategy selectivity appeared earlier in PFo than in PFdl; and (3) on error trials, PFo neurons encoded the correct strategy - the one that had been cued but not implemented - whereas in PFdl the strategy signals were weak or absent on error trials. These findings indicate that PFo and PFdl both contribute to behaviors guided by abstract response strategies, but do so differently, with PFo encoding a strategy and PFdl encoding a response based on a strategy. Copyright © 2011 the authors.
UR - https://iris.uniupo.it/handle/11579/191080
U2 - 10.1523/jneurosci.5816-10.2011
DO - 10.1523/jneurosci.5816-10.2011
M3 - Article
SN - 0270-6474
VL - 31
SP - 4583
EP - 4592
JO - THE JOURNAL OF NEUROSCIENCE
JF - THE JOURNAL OF NEUROSCIENCE
IS - 12
ER -