Coevolutionary, distributed search for inducing concept descriptions

C. Anglano, A. Giordana, G. Lo Bello, L. Saitta

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

This paper presents a highly parallel genetic algorithm, designed for concept induction in propositional and first order logics. The parallel architecture is an adaptation for set covering problems, of the diffusion model developed for optimization. The algorithm exhibits other two important methodological novelties related to Evolutionary Computation. First, it combines niches and species formation with coevolution, in order to learn multimodal concepts. This is done by integrating the Universal Suffrage selection operator with the coevolution model recently proposed in the literature. Second, it makes use of a new set of genetic operators, which maintain diversity in the population.The experimental comparison with previous systems, not using coevolution and based on traditional genetic operators, shows a substantial improvement in the effectiveness of the genetic search.

Lingua originaleInglese
Titolo della pubblicazione ospiteMachine Learning
Sottotitolo della pubblicazione ospiteECML-1998 - 10th European Conference on Machine Learning, Proceedings
EditorClaire Nédellec, Céline Rouveirol
EditoreSpringer Verlag
Pagine322-333
Numero di pagine12
ISBN (stampa)3540644172, 9783540644170
DOI
Stato di pubblicazionePubblicato - 1998
Pubblicato esternamente
Evento10th European Conference on Machine Learning, ECML 1998 - Chemnitz, Germany
Durata: 21 apr 199823 apr 1998

Serie di pubblicazioni

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume1398
ISSN (stampa)0302-9743
ISSN (elettronico)1611-3349

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???10th European Conference on Machine Learning, ECML 1998
Paese/TerritorioGermany
CittàChemnitz
Periodo21/04/9823/04/98

Fingerprint

Entra nei temi di ricerca di 'Coevolutionary, distributed search for inducing concept descriptions'. Insieme formano una fingerprint unica.

Cita questo