Chemometric multivariate tools for candidate biomarker identification: LDA, PLS-DA, SIMCA, Ranking-PCA

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo in volume (Capitolo o Saggio)peer review

Abstract

2-D gel electrophoresis usually provides complex maps characterized by a low reproducibility: this hampers the use of spot volume data for the identification of reliable biomarkers. Under these circumstances, effective and robust methods for the comparison and classification of 2-D maps are fundamental for the identification of an exhaustive panel of candidate biomarkers. Multivariate methods are the most suitable since they take into consideration the relationships between the variables, i.e., effects of synergy and antagonism between the spots. Here the most common multivariate methods used in spot volume datasets analysis are presented. The methods are applied on a sample dataset to prove their effectiveness.

Lingua originaleInglese
Titolo della pubblicazione ospiteMethods in Molecular Biology
EditoreHumana Press Inc.
Pagine237-267
Numero di pagine31
DOI
Stato di pubblicazionePubblicato - 2016

Serie di pubblicazioni

NomeMethods in Molecular Biology
Volume1384
ISSN (stampa)1064-3745

Fingerprint

Entra nei temi di ricerca di 'Chemometric multivariate tools for candidate biomarker identification: LDA, PLS-DA, SIMCA, Ranking-PCA'. Insieme formano una fingerprint unica.

Cita questo