Calcium signals and the in vitro migration of chick ciliary ganglion cells

Paolo Ariano, Jessica Erriquez, Alessandra Gilardino, Mario Ferraro, Davide Lovisolo, Carla Distasi

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

We have studied calcium signals and their role in the migration of neuronal and nonneuronal cells of embryonic chick ciliary ganglion (CG). In vitro, neurons migrate in association with nonneuronal cells to form cellular aggregates. Changes in the modulus of the velocity of the neuron-nonneuronal cell complex were observed in response to treatments that increased or decreased intracellular calcium concentration. In addition, both cell types generated spontaneous calcium activity that was abolished by removal of extracellular calcium. Calcium signals in neurons could be characterized as either spikes or waves. Neuronal spikes were found to be related to action potential generation whereas neuronal waves were due to voltage-independent calcium influx. Nonneuronal cells generated calcium oscillations that were dependent on calcium release from intracellular stores and on voltage-independent calcium influx. Application of thimerosal, a compound that stimulates calcium mobilization from internal stores, increased: (1) the amplitude of spontaneous nonneuronal oscillations; (2) the area of migrating nonneuronal cells; and (3) the velocity of the neuronal-nonneuronal cell complex. We conclude that CG cell migration is a calcium dependent process and that nonneuronal cell calcium oscillations play a key role in the modulation of velocity.

Lingua originaleInglese
pagine (da-a)63-71
Numero di pagine9
RivistaCell Calcium
Volume40
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - lug 2006

Fingerprint

Entra nei temi di ricerca di 'Calcium signals and the in vitro migration of chick ciliary ganglion cells'. Insieme formano una fingerprint unica.

Cita questo