Abstract
In this paper a class of Boundary Value Methods obtained as an extension of the Numerov's method is proposed for the numerical approximation of the eigenvalues of regular Sturm-Liouville problems subject to Dirichlet boundary conditions. It is proved that the error in the so obtained estimate of the kth eigenvalue behaves as O (kp + 1 hp - frac(1, 2)) + O (kp + 2 hp), where p is the order of accuracy of the method and h is the discretization stepsize. Numerical results comparing the performances of the new matrix methods with that of the corrected Numerov's method are also reported.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 1644-1656 |
Numero di pagine | 13 |
Rivista | Applied Numerical Mathematics |
Volume | 59 |
Numero di pubblicazione | 7 |
DOI | |
Stato di pubblicazione | Pubblicato - lug 2009 |
Pubblicato esternamente | Sì |