Boundary Value Methods as an extension of Numerov's method for Sturm-Liouville eigenvalue estimates

L. Aceto, P. Ghelardoni, C. Magherini

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper a class of Boundary Value Methods obtained as an extension of the Numerov's method is proposed for the numerical approximation of the eigenvalues of regular Sturm-Liouville problems subject to Dirichlet boundary conditions. It is proved that the error in the so obtained estimate of the kth eigenvalue behaves as O (kp + 1 hp - frac(1, 2)) + O (kp + 2 hp), where p is the order of accuracy of the method and h is the discretization stepsize. Numerical results comparing the performances of the new matrix methods with that of the corrected Numerov's method are also reported.

Lingua originaleInglese
pagine (da-a)1644-1656
Numero di pagine13
RivistaApplied Numerical Mathematics
Volume59
Numero di pubblicazione7
DOI
Stato di pubblicazionePubblicato - lug 2009
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Boundary Value Methods as an extension of Numerov's method for Sturm-Liouville eigenvalue estimates'. Insieme formano una fingerprint unica.

Cita questo