TY - JOUR
T1 - Bone marrow endothelial progenitors are defective in systemic sclerosis
AU - Del Papa, Nicoletta
AU - Quirici, Nadia
AU - Soligo, Davide
AU - Scavullo, Cinzia
AU - Cortiana, Michela
AU - Borsotti, Chiara
AU - Maglione, Wanda
AU - Comina, Denise P.
AU - Vitali, Claudio
AU - Fraticelli, Paolo
AU - Gabrielli, Armando
AU - Cortelezzi, Agostino
AU - Lambertenghi-Deliliers, Giorgio
PY - 2006/8
Y1 - 2006/8
N2 - Objective. Vascular abnormalities represent the main component of the pathobiology of systemic sclerosis (SSc), progressing from structural derangements of the microcirculation with abortive neoangiogenesis to final vessel loss. Since circulating endothelial progenitor cells (EPCs) are important in the vascular repair process, we undertook this study to examine their numbers in the peripheral blood (PB) of SSc patients and to evaluate whether their status is related to impaired quantitative and/or qualitative aspects of the bone marrow (BM) microenvironment. Methods. Circulating EPCs from 62 SSc patients were evaluated by flow cytometry and characterized as CD45 negative and CD133 positive. BM EPCs, identified as CD133 positive, were isolated from 14 SSc patients and grown to induce endothelial differentiation. In addition, progenitor numbers and functional properties of hematopoietic and stromal compartments were analyzed by various assays. Results. We found that EPCs were detectable in the PB of patients with SSc, and their number was significantly increased in patients with early-stage disease but not in those with late-stage disease. All of the examined BM samples contained reduced numbers of EPCs and stromal cells, both of which were functionally impaired. Both endothelial and stromal progenitors expressed vascular endothelial growth factor receptor, indicating that BM is strongly induced to differentiate into the endothelial lineage; furthermore, only BM EPCs from patients with early disease led to endothelial differentiation in vitro. Conclusion. This study provides the first demonstration that in SSc, there is a complex impairment in the BM microenvironment involving both the endothelial and mesenchymal stem cell compartments and that this impairment might play a role in defective vasculogenesis in scleroderma.
AB - Objective. Vascular abnormalities represent the main component of the pathobiology of systemic sclerosis (SSc), progressing from structural derangements of the microcirculation with abortive neoangiogenesis to final vessel loss. Since circulating endothelial progenitor cells (EPCs) are important in the vascular repair process, we undertook this study to examine their numbers in the peripheral blood (PB) of SSc patients and to evaluate whether their status is related to impaired quantitative and/or qualitative aspects of the bone marrow (BM) microenvironment. Methods. Circulating EPCs from 62 SSc patients were evaluated by flow cytometry and characterized as CD45 negative and CD133 positive. BM EPCs, identified as CD133 positive, were isolated from 14 SSc patients and grown to induce endothelial differentiation. In addition, progenitor numbers and functional properties of hematopoietic and stromal compartments were analyzed by various assays. Results. We found that EPCs were detectable in the PB of patients with SSc, and their number was significantly increased in patients with early-stage disease but not in those with late-stage disease. All of the examined BM samples contained reduced numbers of EPCs and stromal cells, both of which were functionally impaired. Both endothelial and stromal progenitors expressed vascular endothelial growth factor receptor, indicating that BM is strongly induced to differentiate into the endothelial lineage; furthermore, only BM EPCs from patients with early disease led to endothelial differentiation in vitro. Conclusion. This study provides the first demonstration that in SSc, there is a complex impairment in the BM microenvironment involving both the endothelial and mesenchymal stem cell compartments and that this impairment might play a role in defective vasculogenesis in scleroderma.
UR - http://www.scopus.com/inward/record.url?scp=33746982540&partnerID=8YFLogxK
U2 - 10.1002/art.22035
DO - 10.1002/art.22035
M3 - Article
SN - 0004-3591
VL - 54
SP - 2605
EP - 2615
JO - Arthritis and Rheumatism
JF - Arthritis and Rheumatism
IS - 8
ER -