TY - JOUR
T1 - Atypical chronic myeloid leukemia: Where are we now?
AU - Crisa, E.
AU - Nicolosi, M.
AU - Ferri, V.
AU - Favini, C.
AU - GAIDANO, Gianluca
AU - Patriarca, A.
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020
Y1 - 2020
N2 - Atypical chronic myeloid leukemia, BCR-ABL1 negative (aCML) is a rare myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) with a high rate of transformation to acute myeloid leukemia, and poor survival. Until now, the diagnosis has been based on morphological grounds only, possibly making the real frequency of the disease underestimated. Only recently, new insights in the molecular biology of MDS/MPN syndromes have deepened our knowledge of aCML, enabling us to have a better molecular profile of the disease. The knowledge gleaned from next generation sequencing has complemented morphologic and laboratory WHO criteria for myeloid neoplasms and can provide greater specificity in distinguishing aCML from alternative MDS/MPN or MPNs. The most commonly mutated genes (>20%) in aCML are SETBP1, ASXL1, N/K-RAS, SRSF2, and TET2, and less frequently (<10%) CBL, CSFR3, JAK2, EZH2, and ETNK1. Several of these mutations affect the JAK-STAT, MAPK, and ROCK signaling pathways, which are targetable by inhibitors that are already in clinical use and may lead to a personalized treatment of aCML patients unfit for allogeneic transplant, which is currently the only curative option for fit patients. In this review, we present two emblematic clinical cases and address the new molecular findings in aCML and the available treatment options.
AB - Atypical chronic myeloid leukemia, BCR-ABL1 negative (aCML) is a rare myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) with a high rate of transformation to acute myeloid leukemia, and poor survival. Until now, the diagnosis has been based on morphological grounds only, possibly making the real frequency of the disease underestimated. Only recently, new insights in the molecular biology of MDS/MPN syndromes have deepened our knowledge of aCML, enabling us to have a better molecular profile of the disease. The knowledge gleaned from next generation sequencing has complemented morphologic and laboratory WHO criteria for myeloid neoplasms and can provide greater specificity in distinguishing aCML from alternative MDS/MPN or MPNs. The most commonly mutated genes (>20%) in aCML are SETBP1, ASXL1, N/K-RAS, SRSF2, and TET2, and less frequently (<10%) CBL, CSFR3, JAK2, EZH2, and ETNK1. Several of these mutations affect the JAK-STAT, MAPK, and ROCK signaling pathways, which are targetable by inhibitors that are already in clinical use and may lead to a personalized treatment of aCML patients unfit for allogeneic transplant, which is currently the only curative option for fit patients. In this review, we present two emblematic clinical cases and address the new molecular findings in aCML and the available treatment options.
KW - Atypical CML
KW - Next generation sequencing
KW - Target therapy
KW - Atypical CML
KW - Next generation sequencing
KW - Target therapy
UR - https://iris.uniupo.it/handle/11579/118050
U2 - 10.3390/ijms21186862
DO - 10.3390/ijms21186862
M3 - Article
SN - 1422-0067
VL - 21
SP - 1
EP - 17
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 18
ER -