Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes

C Speth, Szabo EX, C Martinho, SILVIO COLLANI, S Oven-Krockhaus, S Richter, I Droste-Borel, B Maček, Stierhof YD, M Schmid, C Liu, S Laubinger

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes. Arabidopsis SE associated with more than 1000, mainly intronless, genes in a transcription-dependent manner. Chromatin-bound SE liaised with paused and elongating polymerase II complexes and promoted their association with intronless target genes. Our results indicate that stress-responsive genes contain no or few introns, which negatively affects their expression strength, but that some genes circumvent this limitation via a novel SE-dependent transcriptional activation mechanism. Transcriptome analysis of a Drosophila mutant defective in ARS2, the metazoan homologue of SE, suggests that SE/ARS2 function in regulating intronless genes might be conserved across kingdoms.
Lingua originaleInglese
RivistaeLife
DOI
Stato di pubblicazionePubblicato - 2018

Keywords

  • Arabidopsis thaliana
  • SE
  • SERRATE
  • polymerase II
  • splicing

Fingerprint

Entra nei temi di ricerca di 'Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes'. Insieme formano una fingerprint unica.

Cita questo