Approximation of functionally graded plates with non-conforming finite elements

Claudia Chinosi, Lucia Della Croce

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper rectangular plates made of functionally graded materials (FGMs) are studied. A two-constituent material distribution through the thickness is considered, varying with a simple power rule of mixture. The equations governing the FGM plates are determined using a variational formulation arising from the Reissner-Mindlin theory. To approximate the problem a simple locking-free Discontinuous Galerkin finite element of non-conforming type is used, choosing a piecewise linear non-conforming approximation for both rotations and transversal displacement. Several numerical simulations are carried out in order to show the capability of the proposed element to capture the properties of plates of various gradings, subjected to thermo-mechanical loads.

Lingua originaleInglese
pagine (da-a)106-115
Numero di pagine10
RivistaJournal of Computational and Applied Mathematics
Volume210
Numero di pubblicazione1-2
DOI
Stato di pubblicazionePubblicato - 31 dic 2007
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Approximation of functionally graded plates with non-conforming finite elements'. Insieme formano una fingerprint unica.

Cita questo