Anomaly Detection in Temporal Graph Data: An Iterative Tensor Decomposition and Masking Approach

Anna SAPIENZA, A Panisson, JTK Wu, L Gauvin, C Cattuto

Risultato della ricerca: Contributo alla conferenzaContributo in Atti di Convegnopeer review

Abstract

Sensors and Internet-of-Things scenarios promise a wealth of interaction data that can be naturally represented by means of timevarying graphs. This brings forth new challenges for the identification and removal of temporal graph anomalies that entail complex correlations of topological features and activity patterns. Here we present an anomaly detection approach for temporal graph data based on an iterative tensor decomposition and masking procedure. We test this approach using highresolution social network data from wearable sensors and show that it successfully detects anomalies due to sensor wearing time protocols.
Lingua originaleInglese
DOI
Stato di pubblicazionePubblicato - 2015
EventoECML PKDD 2015 - Porto, Portugal
Durata: 1 gen 2015 → …

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???ECML PKDD 2015
CittàPorto, Portugal
Periodo1/01/15 → …

Keywords

  • Anomaly detection
  • Data cleaning
  • high resolution social networks
  • non-negative tensor factorization
  • sensors
  • temporal networks

Fingerprint

Entra nei temi di ricerca di 'Anomaly Detection in Temporal Graph Data: An Iterative Tensor Decomposition and Masking Approach'. Insieme formano una fingerprint unica.

Cita questo