Analyticity and criticality results for the eigenvalues of the biharmonic operator

Risultato della ricerca: Capitolo in libro/report/atti di convegnoContributo a conferenzapeer review

Abstract

We consider the eigenvalues of the biharmonic operator subject to several homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov).We show that simple eigenvalues and elementary symmetric functions of multiple eigenvalues are real analytic, and provide Hadamard-type formulas for the corresponding shape derivatives. After recalling the known results in shape optimization, we prove that balls are always critical domains under volume constraint.

Lingua originaleInglese
Titolo della pubblicazione ospiteGeometric Properties for Parabolic and Elliptic PDE’s - GPPEPDEs 2015
EditorCarlo Nitsch, Filippo Gazzola, Kazuhiro Ishige, Paolo Salani
EditoreSpringer New York LLC
Pagine65-85
Numero di pagine21
ISBN (stampa)9783319415369
DOI
Stato di pubblicazionePubblicato - 2016
Pubblicato esternamente
EventoItalian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDE’s, GPPEPDEs 2015 - Palinuro, Italy
Durata: 25 mag 201529 mag 2015

Serie di pubblicazioni

NomeSpringer Proceedings in Mathematics and Statistics
Volume176
ISSN (stampa)2194-1009
ISSN (elettronico)2194-1017

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic PDE’s, GPPEPDEs 2015
Paese/TerritorioItaly
CittàPalinuro
Periodo25/05/1529/05/15

Fingerprint

Entra nei temi di ricerca di 'Analyticity and criticality results for the eigenvalues of the biharmonic operator'. Insieme formano una fingerprint unica.

Cita questo