TY - JOUR
T1 - AMPED
T2 - A new platform for picolinate based luminescent lanthanide chelates
AU - Guanci, Claudia
AU - Giovenzana, Giovanni
AU - Lattuada, Luciano
AU - Platas-Iglesias, Carlos
AU - Charbonnière, Loïc J.
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2015.
PY - 2015/4/28
Y1 - 2015/4/28
N2 - The synthesis of a new nonacoordinating ligand based on an AMPED (6-amino-6-methylperhydro-1,4-diazepine) scaffold functionalized by three picolinate (6-carboxy-2-methylpyridine) arms is described. Coordination of lanthanide cations (Ln = Eu and Tb) was investigated by spectrophotometric titrations monitored by UV-Vis absorption and steady-state emission spectroscopy, showing the formation of [LnL] complexes in aqueous solutions. The corresponding Eu and Tb complexes were isolated and characterized, and their spectroscopic properties (luminescence quantum yields, excited state lifetimes) were determined in buffered water (TRIS/HCl, pH 7.4) and compared to the data reported in the literature for related systems. DFT modelling of the complexes showed the picolinate arms to be perfectly wrapped around the Ln3+ cations, affording an excellent shielding of the metal as confirmed by the determination of the hydration number of q = 0 for both complexes. The high resolution emission spectrum was used to determine the radiative lifetime of Eu in the complex (τrad = 3.05 ms) and the metal-centred luminescence quantum yield (0.20). The modest 0.10 overall luminescence quantum yield of the Eu complex is a consequence of an energy transfer with medium efficiency (0.50) and a low metal centred luminescence efficiency attributed in part to the presence of numerous NH and CH bonds in close proximity to the metal centre.
AB - The synthesis of a new nonacoordinating ligand based on an AMPED (6-amino-6-methylperhydro-1,4-diazepine) scaffold functionalized by three picolinate (6-carboxy-2-methylpyridine) arms is described. Coordination of lanthanide cations (Ln = Eu and Tb) was investigated by spectrophotometric titrations monitored by UV-Vis absorption and steady-state emission spectroscopy, showing the formation of [LnL] complexes in aqueous solutions. The corresponding Eu and Tb complexes were isolated and characterized, and their spectroscopic properties (luminescence quantum yields, excited state lifetimes) were determined in buffered water (TRIS/HCl, pH 7.4) and compared to the data reported in the literature for related systems. DFT modelling of the complexes showed the picolinate arms to be perfectly wrapped around the Ln3+ cations, affording an excellent shielding of the metal as confirmed by the determination of the hydration number of q = 0 for both complexes. The high resolution emission spectrum was used to determine the radiative lifetime of Eu in the complex (τrad = 3.05 ms) and the metal-centred luminescence quantum yield (0.20). The modest 0.10 overall luminescence quantum yield of the Eu complex is a consequence of an energy transfer with medium efficiency (0.50) and a low metal centred luminescence efficiency attributed in part to the presence of numerous NH and CH bonds in close proximity to the metal centre.
UR - http://www.scopus.com/inward/record.url?scp=84927630912&partnerID=8YFLogxK
U2 - 10.1039/c5dt00077g
DO - 10.1039/c5dt00077g
M3 - Article
SN - 1477-9226
VL - 44
SP - 7654
EP - 7661
JO - Dalton Transactions
JF - Dalton Transactions
IS - 16
ER -