Alpha-Tocopherol Protects Human Dermal Fibroblasts by Modulating Nitric Oxide Release, Mitochondrial Function, Redox Status, and Inflammation

Lara Camillo, Elena GROSSINI, Serena Farruggio, Patrizia Marotta, Laura Cristina Gironi, Elisa ZAVATTARO, Paola SAVOIA

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

Background: The altered balance between oxidants/antioxidants and inflammation, changes in nitric oxide (NO) release, and mitochondrial function have a role in skin aging through fibroblast modulation. Tocopherol is promising in counteracting the abovementioned events, but the effective mechanism of action needs to be clarified. Objective: The aim of this study was to examine the effects of α-tocopherol on cell viability/proliferation, NO release, mitochondrial function, oxidants/antioxidants, and inflammation in human dermal fibroblasts (HDF) subjected to oxidative stress. Methods: HDF were treated with H2O2 in the presence or absence of 1-10 μM α-tocopherol. Cell viability, reactive oxygen species (ROS), NO release, and mitochondrial membrane potential were measured; glutathione (GSH), superoxide dismutase (SOD)-1 and -2, glutathione peroxidase-1 (GPX-1), inducible NO synthase (iNOS), and Ki-67 were evaluated by RT-PCR and immunofluorescence; cell cycle was analyzed using FACS. Pro- and anti-inflammatory cytokine gene expression was analyzed through qRT-PCR. Results: α-Tocopherol counteracts H2O2, although it remains unclear whether this effect is dose dependent. Improvement of cell viability, mitochondrial membrane potential, Ki-67 expression, and G0/G1 and G2/M phases of the cell cycle was observed. These effects were accompanied by the increase of GSH content and the reduction of SOD-1 and -2, GPX-1, and ROS release. Also, iNOS expression and NO release were inhibited, and pro-inflammatory cytokine gene expression was decreased, confirming the putative role of α-tocopherol against inflammation. Conclusion: α-Tocopherol exerts protective effects in HDF which underwent oxidative stress by modulating the redox status, inflammation, iNOS-dependent NO release, and mitochondrial function. These observations have a potential role in the prevention and treatment of photoaging-related skin cancers.
Lingua originaleInglese
pagine (da-a)1-12
Numero di pagine12
RivistaSkin Pharmacology and Physiology
Volume35
DOI
Stato di pubblicazionePubblicato - 2022

Fingerprint

Entra nei temi di ricerca di 'Alpha-Tocopherol Protects Human Dermal Fibroblasts by Modulating Nitric Oxide Release, Mitochondrial Function, Redox Status, and Inflammation'. Insieme formano una fingerprint unica.

Cita questo