Algebraic Markov bases and MCMC for two-way contingency tables

Fabio Rapallo

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

The Diaconis-Sturmfels algorithm is a method for sampling from conditional distributions, based on the algebraic theory of toric ideals. This algorithm is applied to categorical data analysis through the notion of Markov basis. An application of this algorithm is a non-parametric Monte Carlo approach to the goodness of fit tests for contingency tables. In this paper, we characterize or compute the Markov bases for some log-linear models for two-way contingency tables using techniques from Computational Commutative Algebra, namely Gröbner bases. This applies to a large set of cases including independence, quasi-independence, symmetry, quasi-symmetry. Three examples of quasi-symmetry and quasi-independence from Fingleton (Models of category counts, Cambridge University Press, Cambridge, 1984) and Agresti (An Introduction to categorical data analysis, Wiley, New York, 1996) illustrate the practical applicability and the relevance of this algebraic methodology.

Lingua originaleInglese
pagine (da-a)385-397
Numero di pagine13
RivistaScandinavian Journal of Statistics
Volume30
Numero di pubblicazione2
DOI
Stato di pubblicazionePubblicato - giu 2003
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'Algebraic Markov bases and MCMC for two-way contingency tables'. Insieme formano una fingerprint unica.

Cita questo