Accuracy and robustness of clustering algorithms for small-size applications in bioinformatics

Pamela Minicozzi, Fabio Rapallo, Enrico Scalas, Francesco Dondero

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

The performance (accuracy and robustness) of several clustering algorithms is studied for linearly dependent random variables in the presence of noise. It turns out that the error percentage quickly increases when the number of observations is less than the number of variables. This situation is common situation in experiments with DNA microarrays. Moreover, an a posteriori criterion to choose between two discordant clustering algorithm is presented.

Lingua originaleInglese
pagine (da-a)6310-6318
Numero di pagine9
RivistaPhysica A: Statistical Mechanics and its Applications
Volume387
Numero di pubblicazione25
DOI
Stato di pubblicazionePubblicato - 1 nov 2008

Fingerprint

Entra nei temi di ricerca di 'Accuracy and robustness of clustering algorithms for small-size applications in bioinformatics'. Insieme formano una fingerprint unica.

Cita questo