A comparison of parametric and non-parametric adjustments using vignettes for self-reported data

Andrew M. Jones, Nigel Rice, SILVANA MARIA ROBONE

Risultato della ricerca: Libro/SaggioLibro

Abstract

The use of parametric and non-parametric approaches to adjust for heterogeneity in self-reported data is investigated in our analysis. Despite the growing popularity of the HOPIT model to account for differences in reporting behaviour recent evidence has questioned the validity of this heavily parametric approach. We compare the performance of this model to an alternative non-parametric estimator. Using data relating to the health domains of the Survey of Health, Ageing and Retirement in Europe (SHARE) we perform pairwise country comparisons of self-reported health, objective measures of health, and measures of health adjusted for the presence of reporting heterogeneity.
Lingua originaleInglese
EditoreVita e Pensiero
Numero di pagine9
ISBN (stampa)9788834325568
Stato di pubblicazionePubblicato - 2013

Keywords

  • health
  • REPORTING HETEROGENEITY
  • SHARE
  • cross-country comparisons
  • parametric and non-parametric approaches

Fingerprint

Entra nei temi di ricerca di 'A comparison of parametric and non-parametric adjustments using vignettes for self-reported data'. Insieme formano una fingerprint unica.

Cita questo