A class of statistical models to weaken independence in two-way contingency tables

Enrico Carlini, Fabio Rapallo

Risultato della ricerca: Contributo su rivistaArticolo in rivistapeer review

Abstract

In this paper we study a new class of statistical models for contingency tables. We define this class of models through a subset of the binomial equations of the classical independence model. We prove that they are log-linear and we use some notions from Algebraic Statistics to compute their sufficient statistic and their parametric representation. Moreover, we show how to compute maximum likelihood estimates and to perform exact inference through the Diaconis-Sturmfels algorithm. Examples show that these models can be useful in a wide range of applications.

Lingua originaleInglese
pagine (da-a)1-22
Numero di pagine22
RivistaMetrika
Volume73
Numero di pubblicazione1
DOI
Stato di pubblicazionePubblicato - gen 2011
Pubblicato esternamente

Fingerprint

Entra nei temi di ricerca di 'A class of statistical models to weaken independence in two-way contingency tables'. Insieme formano una fingerprint unica.

Cita questo