Development of artificial intelligence-based multiplex network for individualized risk stratification of prostate cancer

Progetto: Research

Dettagli progetto

Description

Background Prostate cancer represents the most common neoplasia among men in Western countries, having a substantial impact on patients' lives and on healthcare systems. Its wide range of clinical aggressiveness requires an accurate disease risk stratification to tailor the treatments. Current classification tools' accuracy is still sub-optimal, especially considering low- to intermediate-risk patients, potentially resulting in over- and under-treatment. To date, single-biomarker or oligo-genic approaches have not shown a substantial predictive benefit and are not part of the routine practice. A promising prognostic and predictive role of artificial intelligence (AI) - based integrated platforms has emerged for other malignancies (notably, the ARIADNE platform for the triple-negative breast cancer profiling). To date, the role of these approaches in prostate cancer management is unexplored. Hypothesis We hypothesize that an artificial intelligence-based platform, integrating clinical, pathologic, imaging, genomic and transcriptomic profile of prostate cancer would outperform currently available risk-stratification tools, leading to a better definition of cancer progression and recurrence risk.
StatoAttivo
Data di inizio/fine effettiva2/07/2330/09/28

Funding

  • AIRC - Fondazione AIRC per la Ricerca sul Cancro

Obiettivi di sviluppo sostenibile dell’ONU

Nel 2015, gli Stati membri dell'ONU hanno sottoscritto 17 obiettivi globali di sviluppo sostenibile (OSS) per porre fine alla povertà, salvaguardare il pianeta e assicurare prosperità a tutti. Il presente lavoro contribuisce al raggiungimento dei seguenti OSS:

  • SDG 3 - Salute e benessere

Keywords

  • Artificial Intelligence
  • Genomics/toxicogenomics
  • Prostate ca.
  • Patient risk stratification
  • Magnetic resonance imaging (MRI)

Fingerprint

Esplora i temi di ricerca toccati da questo progetto. Queste etichette sono generate sulla base dei riconoscimenti/sovvenzioni sottostanti. Insieme formano una fingerprint unica.