More efficient prussian blue nanoparticles for an improved caesium decontamination from aqueous solutions and biological fluids

FABIO CARNIATO, Giorgio GATTI, C. Vittoni, A. M. Katsev, M. Guidotti, C. Evangelisti, CHIARA BISIO

Research output: Contribution to journalArticlepeer-review

Abstract

Any release of radioactive cesium-137, due to unintentional accidents in nuclear plants, represents a dangerous threat for human health and the environment. Prussian blue has been widely studied and used as an antidote for humans exposed to acute internal contamination by Cs-137, due to its ability to act as a selective adsorption agent and to its negligible toxicity. In the present work, the synthesis protocol has been revisited avoiding the use of organic solvents to obtain Prussian blue nanoparticles with morphological and textural properties, which positively influence its Cs+ binding capacity compared to a commercially available Prussian blue sample. The reduction of the particle size and the increase in the specific surface area and pore volume values compared to the commercial Prussian blue reference led to a more rapid uptake of caesium in simulated enteric fluid solution (+35% after 1 h of contact). Then, after 24 h of contact, both solids were able to remove >98% of the initial Cs+ content. The Prussian blue nanoparticles showed a weak inhibition of the bacterial luminescence in the aqueous phase and no chronic detrimental toxic effects.
Original languageEnglish
Pages (from-to)3447
JournalMolecules
Volume25
Issue number15
DOIs
Publication statusPublished - 2020

Keywords

  • 137
  • Biotoxicity
  • Cs removal
  • Internal decontamination
  • Nanoparticles
  • Prussian blue

Fingerprint

Dive into the research topics of 'More efficient prussian blue nanoparticles for an improved caesium decontamination from aqueous solutions and biological fluids'. Together they form a unique fingerprint.

Cite this