Improving Stroke Trace Classification Explainability Through Counterexamples

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Deep learning process trace classification is proving powerful in several application domains, including medical ones; however, classification results are typically not explainable, an issue which is particularly relevant in medicine. In our recent work we tackled this problem, by proposing trace saliency maps, a novel tool able to highlight what trace activities are particularly significant for the classification task. A trace saliency map is built by generating artificial perturbations of the trace at hand that are classified in the same class as the original one, called examples. In this paper, we investigate the role of counterexamples (i.e., artificial perturbations that are classified in a different class with respect to the original trace) in refining trace saliency map information, thus improving explainability. We test the approach in the domain of stroke.

Original languageEnglish
Title of host publicationArtificial Intelligence in Medicine - 21st International Conference on Artificial Intelligence in Medicine, AIME 2023, Proceedings
EditorsJose M. Juarez, Mar Marcos, Gregor Stiglic, Allan Tucker
PublisherSpringer Science and Business Media Deutschland GmbH
Pages125-129
Number of pages5
ISBN (Print)9783031343438
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event21st International Conference on Artificial Intelligence in Medicine, AIME 2023 - Portoroz, Slovenia
Duration: 12 Jun 202315 Jun 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13897 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Artificial Intelligence in Medicine, AIME 2023
Country/TerritorySlovenia
CityPortoroz
Period12/06/2315/06/23

Fingerprint

Dive into the research topics of 'Improving Stroke Trace Classification Explainability Through Counterexamples'. Together they form a unique fingerprint.

Cite this