Differential calculus on ISOq(N), quantum Poincaré algebra and q-gravity

Research output: Contribution to journalArticlepeer-review

Abstract

We present a general method to deform the inhomogeneous algebras of the Bn,Cn,Dn type, and find the corresponding bicovariant differential calculus. The method is based on a projection from Bn+1,Cn+1,Dn+1. For example we obtain the (bicovariant) inhomogeneous q-algebra ISOq(N) as a consistent projection of the (bicovariant)q-algebra SOq(N=2). This projection works for particular multiparametric deformations of SO(N+2), the so-called "minimal" deformations. The case of ISOq(4) is studied in detail: a real form corresponding to a Lorentz signature exists only for one of the minimal deformations, depending on one parameter q. The quantum Poincaré Lie algebra is given explicitly: it has 10 generators (no dilatations) and contains the classical Lorentz algebra. Only the commutation relations involving the momenta depend on q. Finally, we discuss a q-deformation of gravity based on the "gauging" of this q-Poincaré algebra: the lagrangian generalizes the usual Einstein-Cartan lagrangian.

Original languageEnglish
Pages (from-to)383-404
Number of pages22
JournalCommunications in Mathematical Physics
Volume171
Issue number2
DOIs
Publication statusPublished - Aug 1995
Externally publishedYes

Fingerprint

Dive into the research topics of 'Differential calculus on ISOq(N), quantum Poincaré algebra and q-gravity'. Together they form a unique fingerprint.

Cite this